Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 291, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592509

RESUMO

Melanin is an Aspergillus flavus cell wall component that provides chemical and physical protection to the organism. However, the molecular and biological mechanisms modulating melanin-mediated host-pathogen interaction in A. flavus keratitis are not well understood. This work aimed to compare the morphology, surface proteome profile, and virulence of melanized conidia (MC) and non-melanized conidia (NMC) of A. flavus. Kojic acid treatment inhibited melanin synthesis in A. flavus, and the conidial surface protein profile was significantly different in kojic acid-treated non-melanized conidia. Several cell wall-associated proteins and proteins responsible for oxidative stress, carbohydrate, and chitin metabolic pathways were found only in the formic acid extracts of NMC. Scanning electron microscopy (SEM) analysis showed the conidial surface morphology difference between the NMC and MC, indicating the role of melanin in the structural integrity of the conidial cell wall. The levels of calcofluor white staining efficiency were different, but there was no microscopic morphology difference in lactophenol cotton blue staining between MC and NMC. Evaluation of the virulence of MC and NMC in the Galleria mellonella model showed NMC was less virulent compared to MC. Our findings showed that the integrity of the conidial surface is controlled by the melanin layer. The alteration in the surface protein profile indicated that many surface proteins are masked by the melanin layer, and hence, melanin can modulate the host response by preventing the exposure of fungal proteins to the host immune defense system. The G. mellonella virulence assay also confirmed that the NMC were susceptible to host defense as in other Aspergillus pathogens. KEY POINTS: • l-DOPA melanin production was inhibited in A. flavus isolates by kojic acid, and for the first time, scanning electron microscopy (SEM) analysis revealed morphological differences between MC and NMC of A. flavus strains • Proteome profile of non-melanized conidia showed more conidial surface proteins and these proteins were mainly involved in the virulence, oxidative stress, and metabolism pathways • Non-melanized conidia of A. flavus strains were shown to be less virulent than melanised conidia in an in vivo virulence experiment with the G. melonella model.


Assuntos
Melaninas , Proteínas de Membrana , Aspergillus flavus , Esporos Fúngicos , Proteoma , Virulência
2.
J Glaucoma ; 33(3): 218-224, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37670504

RESUMO

PRCIS: A pathogenic autosomal dominant MYOC mutation N480K detected in 6 generations of an Indian family is primarily responsible for juvenile open angle glaucoma (JOAG) and adult-onset primary open angle glaucoma (POAG), emphasizing the importance of screening this mutation at a younger age. PURPOSE: To screen myocilin mutations in a large South Indian family with early-onset JOAG and adult-onset POAG. METHODS: In a large South Indian family with 20 members, 8 members diagnosed as JOAG, 7 members as POAG, 4 members as JOAG suspect, and 1 member as POAG suspect were screened for myocilin ( MYOC) mutations using Sanger sequencing. Whole exome sequencing was performed on clinically suspected JOAG/POAG individuals. RESULTS: Myocilin gene mutation N480K (c.1440C>G) was detected in 20 family members, including proband, of whom 8 were JOAG and 7 were POAG patients, 3 were JOAG suspects, and 2 were unaffected. Among the unaffected carriers, 1 was less than 5 years old, and another was 25 years old. The earliest to develop the disease was a 10-year-old child. The penetrance of the mutation was 95% over 10 years of age. This family had JOAG/POAG suspects with no N480K MYOC mutation, and they were further screened for other mutations using whole-exome sequencing. Polymorphisms CYP1B1 L432V and MYOC R76K were detected in 3 JOAG/POAG suspects, and among these 3, one had another CYP1B1 polymorphic variant R368H. The presence of the CYP1B1 polymorphism along with an MYOC polymorphic variant among the JOAG/POAG suspects needs additional studies to explore their combined role in the onset of glaucoma. CONCLUSIONS: This study reveals that MYOC mutation is primarily responsible for JOAG and adult-onset POAG in a family, emphasizing the importance of screening for this mutation at a younger age for early treatment.


Assuntos
Proteínas do Citoesqueleto , Glaucoma de Ângulo Aberto , Glaucoma , Glicoproteínas , Adulto , Criança , Humanos , Pré-Escolar , Glaucoma de Ângulo Aberto/diagnóstico , Glaucoma de Ângulo Aberto/genética , Linhagem , Análise Mutacional de DNA , Pressão Intraocular , Mutação , Glaucoma/genética , Proteínas do Olho/genética
3.
Appl Microbiol Biotechnol ; 107(12): 4025-4040, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37166481

RESUMO

Aspergillus flavus and Aspergillus fumigatus are important human pathogens that can infect the lung and cornea. During infection, Aspergillus dormant conidia are the primary morphotype that comes in contact with the host. As the conidial surface-associated proteins (CSPs) and the extracellular proteins during the early stages of growth play a crucial role in establishing infection, we profiled and compared these proteins between a clinical strain of A. flavus and a clinical strain of A. fumigatus. We identified nearly 100 CSPs in both Aspergillus, and these non-covalently associated surface proteins were able to stimulate the neutrophils to secrete interleukin IL-8. Mass spectrometry analysis identified more than 200 proteins in the extracellular space during the early stages of conidial growth and germination (early exoproteome). The conidial surface proteins and the early exoproteome of A. fumigatus were enriched with immunoreactive proteins and those with pathogenicity-related functions while that of the A. flavus were primarily enzymes involved in cell wall reorganization and binding. Comparative proteome analysis of the CSPs and the early exoproteome between A. flavus and A. fumigatus enabled the identification of a common core proteome and potential species-specific signature proteins. Transcript analysis of selected proteins indicate that the transcript-protein level correlation does not exist for all proteins and might depend on factors such as membrane-anchor signals and protein half-life. The probable signature proteins of A. flavus and A. fumigatus identified in this study can serve as potential candidates for developing species-specific diagnostic tests. KEY POINTS: • CSPs and exoproteins could differentiate A. flavus and A. fumigatus. • A. fumigatus conidial surface harbored more antigenic proteins than A. flavus. • Identified species-specific signature proteins of A. flavus and A. fumigatus.


Assuntos
Aspergillus , Proteoma , Humanos , Proteoma/análise , Aspergillus/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus flavus/metabolismo , Proteínas de Membrana/metabolismo , Esporos Fúngicos/metabolismo
4.
BMC Genomics ; 23(1): 5, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34983375

RESUMO

BACKGROUND: Aspergillus flavus, one of the causative agents of human fungal keratitis, can be phagocytosed by human corneal epithelial (HCE) cells and the conidia containing phagosomes mature into phagolysosomes. But the immunological responses of human corneal epithelial cells interacting with A. flavus are not clear. In this study, we report the expression of immune response related genes of HCE cells exposed to A. flavus spores using targeted transcriptomics. METHODS: Human corneal epithelial cell line and primary cultures were grown in a six-well plate and used for coculture experiments. Internalization of the conidia was confirmed by immunofluorescence microscopy of the colocalized endosomal markers CD71 and LAMP1. Total RNA was isolated, and the quantity and quality of the isolated RNA were assessed using Qubit and Bioanalyzer. NanoString nCounter platform was used for the analysis of mRNA abundance using the Human Immunology panel. R-package and nSolver software were used for data analysis. KEGG and FunRich 3.1.3 tools were used to analyze the differentially expressed genes. RESULTS: Different morphotypes of conidia were observed after 6 h of coculture with human corneal epithelial cells and found to be internalized by epithelial cells. NanoString profiling showed more than 20 differentially expressed genes in immortalized human corneal epithelial cell line and more than ten differentially expressed genes in primary corneal epithelial cells. Distinct set of genes were altered in their expression in cell line and primary corneal epithelial cells. KEGG pathway analysis revealed that genes associated with TNF signaling, NF-KB signaling, and Th17 signaling were up-regulated, and genes associated with chemokine signaling and B cell receptor signaling were down regulated. FunRich pathway analysis showed that pathways such as CDC42 signaling, PI3K signaling, and Arf6 trafficking events were activated by the clinical isolates CI1123 and CI1698 in both type of cells. CONCLUSIONS: Combining the transcript analysis data from cell lines and primary cultures, we showed the up regulation of immune defense genes in A. flavus infected cells. At the same time, chemokine signaling and B cell signaling pathways are downregulated. The variability in the expression levels in the immortalized cell line and the primary cultures is likely due to the variable epigenetic reprogramming in the immortalized cells and primary cultures in the absence of any changes in the genome. It highlights the importance of using both cell types in host-pathogen interaction studies.


Assuntos
Aspergillus flavus , Células Epiteliais/imunologia , Regulação da Expressão Gênica/imunologia , Aspergillus flavus/genética , Linhagem Celular , Quimiocinas/imunologia , Córnea/citologia , Córnea/microbiologia , Células Epiteliais/microbiologia , Humanos , Imunidade , Transdução de Sinais , Esporos Fúngicos
5.
Transl Vis Sci Technol ; 10(5): 6, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34003973

RESUMO

Purpose: We aimed to develop a novel chemical cross-linker treatment for keratoconus by reacting dicarboxylic acid spacer molecules and amine functional groups on protein structure of the tissue using carbodi-imide chemistry. We propose this as an alternative to conventional cross-linking treatment for keratoconus. Methods: The study involved optimization of the cross-linker formulation. Mechanical stiffness of ex vivo porcine and human corneas after application of the cross-linker was measured. Histochemical analysis was performed to record changes in gross morphology after cross-linker treatment on ex vivo porcine and human and in vivo rabbit corneas. Terminal deoxynucleotidyl transferase-mediated dUTP-X nick-end-labeling (TUNEL) staining was performed to study apoptotic effects of cross-linker. Cytotoxicity potential of cross-linker was evaluated by studying explant cultures for cellular outgrowth and immunostaining assays on porcine and human corneas after treatment. Results: We demonstrated a clinically relevant increase in stiffness in ex vivo experiments using porcine and human cornea without removal of corneal epithelium. Histological analysis showed no change in gross morphology of cornea and no evidence of apoptosis. In vivo treatment of rabbit eyes demonstrated initial thinning of corneal epithelium that recovered after seven days although with abnormal regularity of cells. Cellular outgrowth from corneal explant cultures after treatment further confirmed cell survival after treatment. Conclusions: This chemical cross-linking of corneal tissue has potential advantages over current therapeutic options including lower cytotoxicity to stromal cells than ultraviolet A treatment. Translational Relevance: The cross-linker has potential to become a treatment for keratoconus because it overcomes the need for procedures using specialized equipment and ensures accessibility to large populations.


Assuntos
Ceratocone , Animais , Córnea , Reagentes de Ligações Cruzadas , Humanos , Ceratocone/tratamento farmacológico , Coelhos , Riboflavina , Suínos , Raios Ultravioleta
6.
Front Cell Infect Microbiol ; 11: 643312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718288

RESUMO

Although belong to the same genus, Aspergillus fumigatus is primarily involved in invasive pulmonary infection, whereas Aspergillus flavus is a common cause of superficial infection. In this study, we compared conidia (the infective propagules) of these two Aspergillus species. In immunocompetent mice, intranasal inoculation with conidia of A. flavus resulted in significantly higher inflammatory responses in the lungs compared to mice inoculated with A. fumigatus conidia. In vitro assays revealed that the dormant conidia of A. flavus, unlike A. fumigatus dormant conidia, are immunostimulatory. The conidial surface of A. fumigatus was covered by a rodlet-layer, while that of A. flavus were presented with exposed polysaccharides. A. flavus harbored significantly higher number of proteins in its conidial cell wall compared to A. fumigatus conidia. Notably, ß-1,3-glucan in the A. flavus conidial cell-wall showed significantly higher percentage of branching compared to that of A. fumigatus. The polysaccharides ensemble of A. flavus conidial cell wall stimulated the secretion of proinflammatory cytokines, and conidial cell wall associated proteins specifically stimulated IL-8 secretion from the host immune cells. Furthermore, the two species exhibited different sensitivities to antifungal drugs targeting cell wall polysaccharides, proposing the efficacy of species-specific treatment strategies. Overall, the species-specific organization of the conidial cell wall could be important in establishing infection by the two Aspergillus species.


Assuntos
Aspergillus fumigatus , Aspergillus , Animais , Aspergillus flavus , Parede Celular , Camundongos , Esporos Fúngicos
7.
Infect Immun ; 89(6)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33753415

RESUMO

Human corneal epithelial (HCE) cells play a significant role in the innate immune response by secreting cytokines and antimicrobial peptides when they encounter fungal pathogens. But the detailed mechanism of attachment and engulfment of the fungal conidia by HCE cells is not well understood. Here, we show the phagocytosis of Aspergillus flavus conidia by RCB2280 cells and primary HCE cultures using confocal microscopy and proteomic analysis of conidium-containing phagosomes. Phalloidin staining showed actin polymerization, leading to an actin ring around engulfed conidia. Cytochalasin D inhibited the actin-mediated endocytosis of the conidia. Immunolabeling of the early endosomal markers CD71 and early endosomal antigen (EEA1) and the late endosomal markers lysosome-associated membrane protein 1 (LAMP1), Rab7, and cathepsin G showed that endosomal proteins were recruited to the site of conidia and showed maturation of the conidium-containing phagosomes. Lysotracker red DND 99 labeling showed the acidification of the phagosomes containing conidia. Phagosome-specific proteome analysis confirmed the recruitment of various phagosomal and endosomal proteins to the conidium-containing phagosomes. These results show that the ocular surface epithelium contributes actively to antifungal defense by the phagocytosis of invading fungal conidia.


Assuntos
Aspergillus flavus/imunologia , Córnea/citologia , Endocitose , Células Epiteliais/microbiologia , Esporos Fúngicos/imunologia , Suscetibilidade a Doenças , Endossomos/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , Ceratite/imunologia , Ceratite/metabolismo , Ceratite/microbiologia , Fagossomos/metabolismo , Proteoma , Proteômica/métodos
8.
Ocul Immunol Inflamm ; 29(3): 579-586, 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31746662

RESUMO

Purpose: Rapidly progressing cataract is one of the ocular manifestations in leptospiral uveitis patients. We examined whether molecular mimicry between the leptospira antigens and lens proteins exists that could result in cataract in these patients.Methods: Immunoblot analysis using patient sera was done with proteins from normal lens and cataract lens from leptospiral uveitis patients and the cross-reacting lens proteins were identified by mass spectrometry analysis.Results: Retinal dehydrogenase 1 and crystallins (α-B, α-A2, ß-B2), were recognized by the antibodies in the serum of leptospiral uveitis patients. And, retinal dehydrogenase 1 is homologous to the leptospiral protein, betaine aldehyde dehydrogenase.Conclusions: Leptospiral uveitis patient serum contains antibodies that cross-react with multiple lens proteins that have a role in maintaining lens transparency. And, these antibodies could act as a potential trigger for cataractogenesis.


Assuntos
Betaína-Aldeído Desidrogenase/imunologia , Catarata/imunologia , Cristalino/enzimologia , Leptospira/enzimologia , Leptospirose/imunologia , Mimetismo Molecular/fisiologia , Retinal Desidrogenase/imunologia , Uveíte/imunologia , Sequência de Aminoácidos , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Catarata/microbiologia , Reações Cruzadas/imunologia , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Infecções Oculares Bacterianas/imunologia , Infecções Oculares Bacterianas/microbiologia , Humanos , Immunoblotting , Leptospirose/microbiologia , Espectrometria de Massas , Dados de Sequência Molecular , Uveíte/microbiologia
9.
Neurospine ; 17(2): 426-442, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32615701

RESUMO

OBJECTIVE: To catalog and characterize the proteome of normal human intervertebral disc (IVD). METHODS: Nine magnetic resonance imaging (MRI) normal IVDs were harvested from 9 different brain dead yet alive voluntary organ donors and were subjected to electrospray ionization-liquid chromatography tandem mass spectrometry (ESI-LC-MS/MS) acquisition. RESULTS: A total of 1,116 proteins were identified. Functional enrichment analysis tool DAVID ver. 6.8 categorized: extracellular proteins (38%), intracellular (31%), protein-containing complex (13%), organelle (9%), membrane proteins (6%), supramolecular complex (2%), and 1% in the cell junction. Molecular function revealed: binding activity (42%), catalytic activity (31%), regulatory activity (14%), and structural activity (7%). Molecular transducer, transporter, and transcription regulator activity together contributed to 6%. A comparison of the proteins obtained from this study to others in the literature showed a wide variation in content with only 3% of bovine, 5% of murine, 54% of human scoliotic discs, and 10.2% of discs adjacent to lumbar burst fractures common to our study of organ donors. Between proteins reported in scoliosis and lumbar fracture patients, only 13.51% were common, further signifying the contrast amongst the various MRI normal IVD samples. CONCLUSION: The proteome of "healthy" human IVDs has been defined, and our results show that proteomic data on IVDs obtained from scoliosis, fracture patients, and cadavers lack normal physiological conditions and should not be used as biological controls despite normal MRI findings. This questions the validity of previous studies that have used such discs as controls for analyzing the pathomechanisms of disc degeneration.

10.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32571987

RESUMO

Even though both cellular and humoral immunities contribute to host defense, the role played by humoral immunity against the airborne opportunistic fungal pathogen Aspergillus fumigatus has been underexplored. In this study, we aimed at deciphering the role of the complement system, the major humoral immune component, against A. fumigatus Mass spectrometry analysis of the proteins extracted from A. fumigatus conidial (asexual spores and infective propagules) surfaces opsonized with human serum indicated that C3 is the major complement protein involved. Flow cytometry and immunolabeling assays further confirmed C3b (activated C3) deposition on the conidial surfaces. Assays using cell wall components of conidia indicated that the hydrophobin RodAp, ß-(1,3)-glucan (BG) and galactomannan (GM) could efficiently activate C3. Using complement component-depleted sera, we showed that while RodAp activates C3 by the alternative pathway, BG and GM partially follow the classical and lectin pathways, respectively. Opsonization facilitated conidial aggregation and phagocytosis, and complement receptor (CR3 and CR4) blockage on phagocytes significantly inhibited phagocytosis, indicating that the complement system exerts a protective role against conidia by opsonizing them and facilitating their phagocytosis mainly through complement receptors. Conidial opsonization with human bronchoalveolar lavage fluid (BALF) confirmed C3 to be the major complement protein interacting with conidia. Nevertheless, complement C2 and mannose-binding lectin (MBL), the classical and lectin pathway components, respectively, were not identified, indicating that BALF activates the alternative pathway on the conidial surface. Moreover, the cytokine profiles were different upon stimulation of phagocytes with serum- and BALF-opsonized conidia, highlighting the importance of studying interaction of conidia with complement proteins in their biological niche.


Assuntos
Aspergillus fumigatus/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Complemento C3/imunologia , Polissacarídeos Fúngicos/farmacologia , Macrófagos/efeitos dos fármacos , Soro/imunologia , Esporos Fúngicos/imunologia , Aspergilose/genética , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/química , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Parede Celular/química , Parede Celular/imunologia , Ativação do Complemento/efeitos dos fármacos , Complemento C3/genética , Citocinas/biossíntese , Citocinas/imunologia , Polissacarídeos Fúngicos/imunologia , Polissacarídeos Fúngicos/isolamento & purificação , Galactose/análogos & derivados , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Integrina alfaXbeta2/genética , Integrina alfaXbeta2/imunologia , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Mananas/imunologia , Mananas/isolamento & purificação , Mananas/farmacologia , Proteínas Opsonizantes/farmacologia , Fagocitose/efeitos dos fármacos , Cultura Primária de Células , Ligação Proteica , Espécies Reativas de Oxigênio , Soro/química , Soro/microbiologia , Esporos Fúngicos/química , beta-Glucanas/imunologia , beta-Glucanas/isolamento & purificação , beta-Glucanas/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-32435625

RESUMO

Aspergillus flavus and Fusarium solani are the predominant causative agents of mycotic keratitis in the tropical part of the world. Tear proteins play a major role in the innate immune response against these fungal infections as has been shown by the presence of complement proteins and neutrophil extracellular trap proteins in keratitis patients tear. In this study, we established the presence of the components of the alternate pathway of complement system and their functional state in the tear film of mycotic keratitis patients. The complement proteins namely, C3 and CFH were found only in the open-eye tear of patients but not in control individuals. In vitro analysis showed binding of purified C3b and CFH to fungal spores, which confirmed that the spores can provide a foreign surface for forming the complement complex. Analysis of spore bound tear proteins by mass spectrometry exhibited the presence of known proteins of the alternate pathway complement cascade in keratitis patient tear. Hemolytic assay using rabbit RBC confirmed the presence of a functional alternate pathway of complement cascade in the tear proteome of the patients. The presence of negative regulators, CFH and CFI, in the patient tear indicate that the complement activity is tightly regulated during fungal infection. Mass spectrometry data show vitronectin and clusterin, two known inhibitors of the membrane attack complex only in the patient tear. These data demonstrate the activation of the alternate pathway of complement cascade during the early stages of infection. Interestingly, the production of multiple negative regulators of complement cascade implies the pathogen can effectively evade the host complement system during infection.


Assuntos
Infecções Oculares Fúngicas , Ceratite , Animais , Aspergillus flavus , Proteínas do Sistema Complemento , Fusarium , Humanos , Coelhos
12.
J Proteomics ; 193: 62-70, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30557665

RESUMO

Fungal keratitis is a serious, potentially sight-threatening corneal infection that is more prevalent in the tropical parts of the world including India, and A. flavus and Fusarium solani are the predominant etiological agents. The surface of fungal conidia is covered by hydrophobin family proteins, effectively masking the conidial antigens from immune cells. In this study, we report that the outer cell wall layer of A. flavus conidia contain Rod A as well as other hydrophobins, which could be extracted by formic acid. Analysis of these surface proteins by mass spectrometry showed the presence of rodlet forming hydrophobins and other membrane and antigenic proteins. Our analysis revealed that Rod A existed as two proteoforms on the conidial surface. These proteoforms were separated using polyacrylamide gel electrophoresis and the amino acid sequence of these proteoforms was determined by high resolution mass spectrometry. PCR analysis of the mRNA encoding the Rod A showed the retention of intron one, which results in the formation of a truncated proteoform two. This is the first report in which the presence of RodA and its proteoforms and their mechanism of formation has been demonstrated in the corneal pathogenic fungus A. flavus. SIGNIFICANCE: A. flavus is a common fungal pathogen in tropical countries playing a predominant role in causing mycotic keratitis in humans. Surface of fungal conidia is immunologically inert primarily due to the hydrophobin family proteins forming a rodlet layer and masking the conidia from immune cells. In this study we demonstrated the existence two proteoforms of RodA/hydrophobin A and intron retention is shown to be responsible for the formation of one of the proteoforms. In addition, the spore surface proteins of A.flavus corneal isolates and saprophyte are distinctly different, which indicate the spore surface protein profile is ecotype specific. This is the first report showing the presence of two proteoforms of RodA on A.flavus conidial surface and demonstration of the mechanism of formation of the proteoforms.


Assuntos
Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Esporos Fúngicos/metabolismo , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Esporos Fúngicos/genética
13.
J Proteomics ; 152: 13-21, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27789337

RESUMO

Aspergillus flavus and Fusarium sp. are primary causative agents of keratitis that results in corneal tissue damage leading to vision loss particularly in individuals from the tropical parts of the world. Proteins in the tear film collected from control and keratitis patients was profiled and compared. A total of 1873 proteins from control and 1400 proteins from patient tear were identified by mass spectrometry. While 847 proteins were found to be glycosylated in the patient tear, only 726 were glycosylated in control tear. And, some of the tear proteins showed alterations in their glycosylation pattern after infection. Complement system proteins, proteins specific for neutrophil extracellular traps and proteins involved in would healing were found only in the patient tear. The presence of these innate immune system proteins in the tear film of patients supports the previous data indicating the involvement of neutrophil and complement pathways in antifungal defense. High levels of wound healing proteins in keratitis patient tear implied activation of tissue repair during infection. The early appearance of the host defense proteins and wound healing response indicates that tear proteins could be used as an early marker system for monitoring the progression of pathogenesis. Identification of negative regulators of the above defense pathways in keratitis tear indicates an intricate balance of pro and anti-defense mechanisms operating in fungal infection of the eye. SIGNIFICANCE: Tear proteins from control and mycotic keratitis patients were separated into glycoproteins and non-glycosylated proteins and then identified by mass spectrometry. Tear proteins from keratitis patients showed alteration in the glycosylation pattern indicating the alteration of glycosylation machinery due to infection. Neutrophil extracellular traps specific proteins, complement pathway proteins, as well as wound healing proteins, were found only in patient tear showing the activation of antifungal defense in the patient tear. Negative regulators of these defense pathways were also found in patient tear indicating a fine balance between pathogen clearance and host tissue destruction during fungal infection depending upon the individual specific host - pathogen interaction. This understanding could be used to predict the progression and outcome of infection.


Assuntos
Aspergillus flavus/patogenicidade , Proteínas do Olho/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Aspergilose , Ativação do Complemento , Infecções Oculares Fúngicas , Proteínas do Olho/imunologia , Feminino , Glicoproteínas/metabolismo , Glicosilação , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ceratite/microbiologia , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Cicatrização , Adulto Jovem
14.
Data Brief ; 9: 888-894, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27872886

RESUMO

Fungal keratitis is one of the leading causes of blindness in the tropical countries affecting individuals in their most productive age. The host immune response during this infection is poorly understood. We carried out comparative tear proteome analysis of Aspergillus flavus keratitis patients and uninfected controls. Proteome was separated into glycosylated and non-glycosylated fractions using lectin column chromatography before mass spectrometry. The data revealed the major processes activated in the human host in response to fungal infection and reflected in the tear. Extended analysis of this dataset presented here complements the research article entitled "Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection [1]" (Jeyalakhsmi Kandhavelu, Naveen Luke Demonte, Venkatesh Prajna Namperumalsamy, Lalitha Prajna, Chitra Thangavel, Jeya Maheshwari Jayapal, Dharmalingam Kuppamuthu, 2016). The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE:PXD003825.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...